via Centenary Celebration of Chemist, Revolutionary and Academic – Professor Thomas P. Dillon [follow this link to press release]

I was delighted to be included on the organising committee of this very interesting event in NUI Galway. We are celebrating a century of carbohydrate research in Galway, beginning with the appointment of Prof Dillon (a republican revolutionary and chemist) as Professor of Chemistry in 1919. His research into alginates and polysaccharides from seaweed has been succeeded by a range of research in chemistry, biochemistry, botany, energy, medicine and medical devices, with an ever-evolving understanding of the roles of sugars in nature. We will showcase as much of this as we can fit into one day.

In the evening, a chemistry-inspired ballet “Kekulé’s Dream” and a historical lecture about Dillon (created by his granddaughters Ester and Honor O Brolchain, respectively) will help engage the general public in these topics, and 7 young researchers will take up the challenge of explaining why their research matters in 3 minutes, with zero jargon allowed (the Dillon “Threesis” Challenge).

[Event supported by SFI, RSC Republic of Ireland Local Section, CÚRAM and NUI Galway]

 

Advertisement

It was great news today to hear the 2016 Nobel Prize in Chemistry was awarded to some pioneers in the field of supramolecular chemistry: Jean-Pierre Sauvage, J Fraser Stoddart and Bernard Feringa. During my PhD studies, I read the work of Sauvage and Stoddart a lot for inspiration; they are constantly producinSauvage's article in Tetrahedron Letters 1983g beautiful and elegant structures from discrete molecular units interacting in controlled ways. While most of my PhD ended up focussing on lanthanide-directed self assembly and luminescent compounds, I was always chasing the goal of interlocked structures and remember being fascinated by Sauvage’s early results describing the first metal-directed catenanes (Tetrahedron Letters 1983), mechanically interlocked rings with no chemical bonds between the two molecular components. This article laid the groundwork for the tiny molecular machines for which the trio were given the prestigious award today. Stoddart’s contributions to controlling rotaxane movement and Feringa’s publication of the first ‘molecular motor’ were remarkable breakthroughs, but the elegance of interlocked systems has fascinated me since I first saw them and I was delighted to finally publish some of my own work on catenanes in Angewandte Chemie this year, contributing in a small way to the ever-expanding supramolecular field.

To end this post, I’ll add a quote from my PhD supervisor Prof Thorri Gunnlaugsson (Trinity College Dublin) talking today about Sir JF Stoddart, a man he greatly admires and who received an honorary doctorate from Trinity a few years ago:

Speaking about the significance of the work that led to him sharing the 2016 Nobel Prize, Professor of Chemistry at Trinity, Thorri Gunnlaugsson, said: This is truly a fantastic day for chemists and specially for those of us who are involved in the development of supramolecular and nano-chemistry. The development of molecules that are functional and can carry out actions such as programmed operations, and can mimic macroscopic function on the nanoscale, such as that of machines, has been at the heart of this area of chemistry.”

“Today’s announcement of the Nobel Prize in Chemistry being awarded to Professors Stoddart, Sauvage and Feringa, for their development of molecular machines, acknowledges the major scientific achievement made to date in this important field.”