Vanuatu (S4.07)

Vanuatu (S4.07)

After a long pause, 80 Days is back! I’m particularly proud of the interview with Prof Lamont Lindstrom in this episode. He had some fascinating things to say about the origins and practices of cargo cults – to which we could probably devote a whole episode!

80 Days

S04E06 Vanuatu Audio

In this episode of 80 Days: An Exploration Podcast, we’ll be talking about The Republic of Vanuatu, a Pacific island country located in the South Pacific Ocean, around 1,700 kilometres (or 1,000 miles) east of northern Australia and 540 kilometres (340 miles) northeast of New Caledonia.

Vanuatu_in_Oceania.svg

First inhabited by Melanesian people around 3,000 years ago, parts of the archipelago were settled by British and French colonists in the 1800s, and in 1906 France and the United Kingdom agreed to administer the islands jointly in a unique form of government known as the British-French Condominium. Vanuatu gained its independence in July 1980, and is today home to around 270,000 people.

Only around 65 of the archipelago’s 82 islands are inhabited, and although the country is spread across 12,200 square kilometres (4,700 sq mi) its land surface is very limited to around 4,700 square kilometres or 1,800 sq…

View original post 666 more words

Dillon Centenary Symposium Public Session video

The Public Session of the Dillon Centenary Symposium is available to view on YouTube. This includes the Dillon Threesis Challenge (young researchers talking about their work for 3 minutes with zero jargon), a chemistry-inspired ballet and historical talk about Prof Dillon.

Selected lectures from the Scientific Session are available as a playlist here.

Not all lectures were broadcast. Consult the programme to see who is currently speaking. The “Public Session” from 17.00 GMT was broadcast.

Update 20/12/2019: More edited videos of the threesis and ballet, filmed from various angles are now available as a playlist here.

via Centenary Celebration of Chemist, Revolutionary and Academic – Professor Thomas P. Dillon [follow this link to press release]

I was delighted to be included on the organising committee of this very interesting event in NUI Galway. We are celebrating a century of carbohydrate research in Galway, beginning with the appointment of Prof Dillon (a republican revolutionary and chemist) as Professor of Chemistry in 1919. His research into alginates and polysaccharides from seaweed has been succeeded by a range of research in chemistry, biochemistry, botany, energy, medicine and medical devices, with an ever-evolving understanding of the roles of sugars in nature. We will showcase as much of this as we can fit into one day.

In the evening, a chemistry-inspired ballet “Kekulé’s Dream” and a historical lecture about Dillon (created by his granddaughters Ester and Honor O Brolchain, respectively) will help engage the general public in these topics, and 7 young researchers will take up the challenge of explaining why their research matters in 3 minutes, with zero jargon allowed (the Dillon “Threesis” Challenge).

[Event supported by SFI, RSC Republic of Ireland Local Section, CÚRAM and NUI Galway]

 

A spoonful of sugar makes the catalytic activity go down! [Dalton Trans.]

I’m delighted to finally publish this work, the first of my research carried out during my Marie Curie Fellowship in University of Bern to come out. A lot of hard work by Erasmus student Pauline went into gathering data behind this manuscript where we asked the question – what impact would incorporating carbohydrates into the structure of a Ruthenium(II)-triazolylidene complex have on its ability to convert a ketone to an alcohol via transfer hydrogenation catalysis.

There were challenges in isolating the desired compound, so it had to be generated in situ, but we were able to assess the activity, and the results were interesting, and can be found in detail here in Dalton Transactions.

To summarise the conclusions: The carbohydrate functionality does impact catalytic activity (transfer hydrogenation of ketones). In complexes with the glucose directly triazolylidene-bound,  turnover rates were substantially higher when compared to more remote carbohydrate functionalisation (i.e. with an ethylene spacer). Both new complexes, however, have reduced activity compared to  unfunctionalised carbene complexes. Insight was also gained into the nature of the catalytic cycle through a substrate scope analysis.

Exclaves in Switzerland (Minisode)

Exclaves in Switzerland (Minisode)

A very personal episode of 80 Days, marking the close of the Swiss chapter of my life. I’ll always have fond memories of the quirky aspects of Switzerland, but it’s definitely time to move home.

80 Days

In this minisode, Joe explores, literally, the idea of an exclave after wandering into one a couple of years ago. Although we’ve covered a couple of enclaves in the past (including San Marino and The Gambia), this episode is the first time we’ve examined the opposite concept – a tiny piece of a country marooned inside another’s borders.

This is also something of a personal episode for Joe (@anbeirneach), as it marks an end to his time living in Switzerland. Luke (@thelukejkelly) and Mark (@markboyle86) also feature, and we discuss briefly our upcoming fourth season, which is due in a couple of weeks.

For the curious, you can find more on the German enclave of Büsingen am Hochrhein here on Atlas Obscura, or read this article on BigThink. The New York Times article quoted in the episode can be found here

View original post 272 more words

New grant to let me launch my independent research – SIRG

New grant to let me launch my independent research – SIRG

I was honoured at a ceremony today with Minister Pat Breen to be awarded a Starting Investigator Research Grant (SIRG) by Science Foundation Ireland. This SIRG award will allow me to begin a programme of independent research in NUI Galway in the coming months and begin to build my own research group.

Me, pictured with James Lawless TD (Fianna Fáil Science and Technology Spokesperson) and Minister Pat Breen TD (Minister of State with special responsibility for Trade, Employment, Business, EU Digital Single Market and Data Protection) outside the Irish Parliament
Me, pictured with James Lawless TD (Fianna Fáil Science and Technology Spokesperson) and Minister Pat Breen TD (Minister of State with special responsibility for Trade, Employment, Business, EU Digital Single Market and Data Protection) outside the Irish Parliament

Asked about the purpose of SIRG on RTÉ’s Drivetime programme, Prof. Mark Ferguson (Director General of SFI) said “it’s about launching the careers of very bright, young scientists in Ireland”, and indeed it’s a very important programme to allow people like me to return home and start independent research.

My research will develop novel devices that will indicate the presence of specific bacteria through colour changes (modulating luminescence), using interactions of their proteins with sugar-based chemical compounds on the surface of newly-designed materials. This will provide a convenient visual strategy to identify disease-causing bacteria. 3D-Printing will be used to create these compact diagnostic devices, which will benefit patient outcomes and quality of life.

I got interested in fluorescent sensor materials and the chemistry of sugars during my PhD research in Trinity College Dublin with Prof Gunnlaugsson (Irish Research Council Scholarship, 2010-15). Over the last few years in University of Bern, Switzerland, I have been further exploring the role of sugars in catalysis as part of my Marie Curie Fellowship with Prof Albrecht (European Commission H2020, 2017-19). I also gained experience in studying sugar-protein interactions in University of Nottingham, during a 3-month placement there. These interactions are very relevant to a lot of diseases. My new project aims to bring together the skills I have learned through my research training to address practical problems that affect people’s’ lives.

20 SIRG Awardees with Minister Breen and Prof Fergusson of SFI
Dublin, 15th January 2019 – Minister for Trade, Employment, Business, EU Digital Single Market and Data Protection, Pat Breen, T.D., today launched Science Foundation Ireland’s Plan for 2019 and announced a research investment of €10.8 million in funding for 20 projects in the areas of health, energy, environment, materials and technology. He is pictured with Prof Mark Ferguson, Director General of Science Foundation Ireland and Chief Scientific Adviser to the Government of Ireland and SFI Starting Investigator Research Grant (SIRG) Awardees. The projects, which will be funded for four years, will support 20 researchers and a further 20 PhD students. [Picture Jason Clarke]
By providing a new methodology for rapid diagnosis of bacterial infection, my work will facilitate quicker decision-making on targeted medical treatment strategies for patients. In Ireland this would be particularly valuable for rapid diagnosis of Pseudomonas aeruginosa infections, a significant risk factor for cystic fibrosis patients (as well as others with compromised immune systems). More generally, helping clinicians avoid the use of broad-spectrum antibiotics would help combat the global challenge of increased antibiotic resistance.
This new technology could also be deployed in other scenarios such as detecting bacterial contamination of water supplies.

This award allows me to return to Ireland and make a contribution to Irish society through scientific research, building upon my experience abroad (in Switzerland and the UK). The Starting Investigator Research Grant scheme has given me a fantastic opportunity to begin my independent research programme at a relatively young age in NUI Galway School of Chemistry, and also to work closely with the CÚRAM SFI Centre for Medical Device Research, a hub of expertise in this sector.

Maynooth University and Trinity provided me with excellent training, working alongside supportive researchers, and I now look forward to expanding my network of colleagues in both academia and the medical devices industry, and forging new productive partnerships in the years to come.

My grant also funds me to recruit a PhD student to be part of this interdisciplinary research programme. If you know of any students who would be motivated by this topic, please feel free to get in touch with me.


Press releases: NUI Galway, and Science Foundation Ireland [lay abstracts].

Media: KFM interview, article in the Leinster Leader (“€420,000 grant a 30th birthday present for Kildare’s Dr Joe Byrne”), article on Galway Daily, launch coverage in the Irish Times, article and footage from launch on Silicon Republic.

Seasons of Lab

Seasons of Lab

 ♫ “Five hundred, twenty-five thousand, six hundred reactions…”

That song from the musical Rent is in my head as I write this post on seasons. It’s a catchy one that brings back memories of my misspent youth hanging out with people who would sing showtunes at the drop of a hat in perfect four-part harmony!

One of the things I love about working in a chemistry lab and constantly making new compounds as part of my research is the beautiful accidental shapes and patterns molecules can assemble into, given enough time – and how our pattern-seeing brains can ascribe poetic meanings to these patterns based on what we want to see! Two recent examples from my own work caught my eye enough recently to pull out a camera and snap a shot. They tell a chronologically-consistent story of the changing seasons, as the colours of Bern’s horizon have changed from auburn to snowy white this last month, I’ve seen fallen leaves and swirls of snow in the bottom of round-bottomed flasks:

Autumn left behindWinter precipitate

Obviously crystals are some of the most beautiful formations that we can see in the lab, with their sparkle and sharp, defined edges: needles, plates, and more complex symmetries. As chemists, we love large ‘single crystals’ which can be subjected to X-ray diffraction experiments to generate the molecular structures which illustrate the pages of so many research articles these days. I had an old starting-material from much of my work in Trinity College Dublin (2,6-Bis(trimethylsilyl)ethynylpyridine, if you must know), which loved to crystallise. I believe I fished out a crystal of it from a reaction mixture once, hoping it would tell me something about a new exciting product, but alas no. Nonetheless, my colleague Dr Salvador Blasco solved this structure, which, despite not telling us anything new, was pleasingly symmetrical:

2,6-Bis(trimethylsilyl)ethynylpyridine

I often think with wonder about the deep insight of early chemists into the nature of matter that they could be so certain of chemical structures with a small range of tools like melting-points, taste, and a series of tests and probes; we have access to so many techniques nowadays that we take for granted that can show us, atom by atom, how a molecule fits together. So often, the early chemists of a century and more ago were right or close to it based on wisdom intuition and methodical analysis.

With major developments in materials science in recent decades, tools such as Scanning Electron Microscopy and Helium Ion Microscopy have allowed us to look closely at how the surfaces of substances are arranged on a slightly larger scale than single molecules, which can be vital to understanding them. More pertinent to the whimsical theme of of this post is just the fascination you feel when seeing that, on zooming all the way in, the flexible gel-like substance you have made looks like a plate of spaghetti, or a woven cloth. The picture below comes from my Dalton Transactions article, thanks to my collaborators Drs Kotova, Bell and Prof Boland, working at CRANN/AMBER in Trinity College Dublin:

Helium ion miscroscopy of a metallogel

There is beauty and fascination everywhere. It’s just a matter of how far you need to zoom in to see it!